ARITHMETICAL FUNCTIONS, PRIME COUNTING FUNCTION AND POLYNOMIALS

CEZAR LUPU, VLAD MATEI

Abstract. In this paper we prove some properties regarding classical arithmetical functions and the prime counting function in connection with polynomials. More specific, this paper deals with composition between arithmetical functions or between the prime counting function and a polynomial and we study when some of these kind of compositions are rational functions or another polynomial. In the proofs of our results we shall use inequalities or estimations of arithmetical functions and the prime counting function as well as some elementary inequalities.

1. Introduction & Main results

The importance of polynomials is well-known in the study of the properties of arithmetical functions like: $\sigma(n) = \sum_{d|n} d$, $d(n) = \sum_{d|n} 1$, Euler’s totient function $\phi(n)$ and the prime counting function $\pi(x) = \sum_{p \leq x} 1$. Recall that a function R is rational if it can be written in the form $R(x) = \frac{P(x)}{Q(x)}$, where P and Q are polynomial functions in x and $Q(x)$ is not the zero polynomial.

In this paper, we establish some new properties of the functions mentioned above regarding rational functions and we study when the composition of an arithmetical function and a polynomial restricted to the domain of prime numbers is another polynomial. Concerning this matter, we also prove that the composition between the prime counting function and a polynomial restricted to the domain of prime numbers cannot be another polynomial. There are many estimates of the arithmetical functions and the prime counting function in the literature. In the proofs of our results, we shall use the following classical estimates, namely

Theorem 1.1. For the functions $\sigma(n), d(n), \phi(n)$ and $\pi(x)$ defined above, the following properties hold:

1. $\sigma(n) < n \log n, \forall n \geq 7$;
2. $d(n) = o(n^\epsilon), \forall \epsilon > 0$;
3. $\pi(x) \sim \frac{x}{\log x}$;

Key words and phrases. polynomials, prime counting function, arithmetical function, Dirichlet theorem.

2000 Mathematics Subject Classification. 11K65, 11R09, 11N05, 11N13.
(4) $\phi(\sigma(n)) < ne, \forall e > 0$, except for a set of density 0.

(5) $\phi(n) \geq \frac{1}{3\log\log n}, \forall n \geq 67$.

The proof of this theorem can be found in [8] (part (1), part (5)), [4], [8] (part(2)), [2], [9] (part 4). Part (3) of the theorem is nothing else than the celebrated prime number theorem. If we denote by p_n the n-th prime number, then the prime number theorem can be stated as $p_n \sim n\log n$.

First of all, we state the following folklore

Theorem 1.2. The prime counting function, $\pi(x)$ cannot be a rational function for all $x \in \mathbb{N}$.

The standard proof of theorem 1.2 involves algebraic properties of polynomials. In the next section, we give another proof of this theorem based on elementary tools of Real Analysis. This theorem appears as an exercise at page 101 in [4]. In this paper, we will prove other theorems concerning polynomials and arithmetical functions and the prime counting function, namely

Theorem 1.3. There do not exist polynomials $P, Q \in \mathbb{R}[X]$ such that

$$\int_{0}^{\log n} \frac{P(x)}{Q(x)} \, dx = \frac{n}{\pi(n)}, \forall n \in \mathbb{N}^*.$$

Theorem 1.4. Let $f \in \{\sigma(n), \phi(n), d(n)\}$. If $f(P(p)) = Q(p)$ for any prime number p, where $P, Q \in \mathbb{Z}[X]$ are monic polynomials, then $P(X) = X^k, k \in \mathbb{N}$.

Theorem 1.5. There do not exists polynomials $P, Q \in \mathbb{Z}[X]$ such that $\pi(P(p)) = Q(p)$, for any prime number p.

Theorem 1.6. There do not exist polynomials $P, Q \in \mathbb{R}[X]$ such that $g(\sigma(n)) = \frac{P(n)}{Q(n)}, \forall n \in \mathbb{N}$, where $g \in \{\phi(n), \sigma(n), d(n)\}$.

2. Proofs of the main results

In this section we prove our main results stated in the previous section. First of all, we begin with the proof of theorem 1.2, which can be summarised as it follows:

Proof of Theorem 1.2. We assume by contradiction that $\pi(x) = \frac{P(x)}{Q(x)}, \forall x \in \mathbb{N}$.

By the prime number theorem (Theorem 1.1, (3)), we have that $\lim_{x \to \infty} \frac{\pi(x)}{x} = 0$.

This means that $\lim_{x \to \infty} \frac{P(x)}{xQ(x)} = 0$ which implies that $\deg(P) < \deg(Q) + 1$. On the
other hand, since \(\lim_{x \to \infty} \pi(x) = \infty \), we have that \(\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \infty \) which means that \(\deg(P) > \deg(Q) \), false. \(\square \)

Remark. There exists an algebraic proof of the theorem as mentioned in the previous section which perhaps is already a folklore. It is well-known that if \(\pi(n) > \pi(n-1) \), then \(n \) is prime. Let us assume that \(n \) is a composite number. Thus, \(\pi(n) = \pi(n-1) \). We argue by contradiction and assume that \(\pi(x) = \frac{P(x)}{Q(x)} \), \(\forall x \in \mathbb{N} \). Thus, for \(n \) composite we have \(\frac{P(n)}{Q(n)} = \frac{P(n-1)}{Q(n-1)} \). Let \(S(x) = P(x)Q(x-1) - P(x-1)Q(x) \).

From the above assumption, we have that \(S(n) = 0, \forall n \) composite. But this means that \(S \) has many infinitely zeroes and thus \(S \equiv 0 \) and we deduce \(\pi(n) = \pi(n-1), \forall n \), contradiction.

In \([5]\), L. Panaitopol proved that for every \(n \geq 1429 \), the inequality \(\pi(n) > \frac{n}{H_n} \) holds true, where \(H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \) is the harmonic sequence. In fact, this was observed for the first time by Locker-Ernst in \([6]\) which stated that for \(n > 50 \), a good approximation for \(\pi(n) \) is given by \(n/H_n \). The proof given in \([5]\) uses strong approximations for the prime counting functions obtained by Rosser and Schoenfeld in \([7]\). The proof of the Theorem 1.3 that will be given in what will follow does not use advanced approximations for \(\pi(x) \) as described in \([5]\) or \([7]\).

Proof of Theorem 1.3. Suppose that such polynomials exist. Let \(R \) be that rational function and put

\[
 f(x) = \frac{1}{x} \cdot \int_0^{\log x} R(t)dt.
\]

Then we have \(f(n) = f(n+1) \) whenever \(n+1 \) is composite. Thus \(f' \) vanishes infinitely many times by Rolle’s theorem, so there is a sequence \(c_n \) between \(n \) and \(n+1 \) whenever \(n+1 \) is composite such that \(f'(c_n) = 0 \). Since

\[
 f(x) + xf'(x) = \frac{1}{x}R(\log x),
\]

this gives

\[
 R(\log(c_n)) = \int_0^{\log(c_n)} R(t)dt,
\]

which means that by asymptotic cosiderations that \(R \) must be null, contradiction. \(\square \)

The proof of the next theorem is quite elementary and involves rudiments of Real Analysis and uses the celebrated Dirichlet’s theorem on arithmetical progressions.

Proof of Theorem 1.4. First of all, we will prove that \(\deg(P) = \deg(Q) \). Assume that \(f = \phi(n) \) and \(\deg(Q) > \deg(P) \). Since \(\phi(n) \leq n, \forall n \geq 1 \) it follows immediately that \(Q(p) > P(p) \), so the polynomial \(Q(x) - P(x) \) is nonconstant and monic and
then, we have that $\lim_{x \to \infty} (Q(x) - P(x)) = \infty$. But this last assertion contradicts the inequality $Q(p) - P(p) \leq 0, \forall p$ prime number. Thus $\deg(Q) \leq \deg(P)$. Now, we will prove the converse inequality; $\deg(Q) \geq \deg(P)$. Assume by contradiction that $\deg(Q) < \deg(P) - 1$. Then the polynomial $2P(x) - xQ(x)$ is nonconstant and monic and like we did above, we have that $\lim_{x \to \infty} (2P(x) - xQ(x)) = \infty$, so for sufficiently large prime number p we have $2P(p) - pQ(p) \geq 0$ which is equivalent to $\frac{Q(p)}{P(p)} \leq \frac{2}{p}$.

On the other hand, we have that $\frac{\phi(P(p))}{P(p)} = \prod_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \left(1 - \frac{1}{q}\right) > e^{- \sum_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \frac{1}{q-1}}$. Now, by the prime number theorem stated in the form $p_n \sim n \log n$, there exists a constant $k \in \mathbb{N}^*$ such that $p_n - 1 > n \log n$, $\forall n \in \mathbb{N}^*$. This means that

$$\sum_{i=1}^{n} \frac{1}{p_i - 1} \leq 1 + k \sum_{i=2}^{n} \frac{1}{i \log i}.$$

By Lagrange’s mean value theorem applied to the function $r(x) = \log \log x$, we will have

$$\sum_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \frac{1}{q - 1} \leq \sum_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \frac{1}{q - 1} < 1 + k + k \log \log t,$$

It is easy to see that $t \leq P(p)$, so

$$\sum_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \frac{1}{q - 1} \leq 1 + k + k \log P(p).$$

Using the inequality above and the fact that $\frac{\phi(P(p))}{P(p)} > e^{- \sum_{\substack{q \text{ prime} \mid P(p) \cap \mathbb{N}, q \leq P(p)}} \frac{1}{q-1}}$, we obtain that

$$\frac{\phi(P(p))}{P(p)} > e^{1+k} \left(\frac{1}{\log P(p)} \right)^k.$$

On the other hand, since $\frac{\phi(P(p))}{P(p)} \leq \frac{2}{p}$, we have that $p^{\frac{k}{\pi} - \frac{k+1}{\pi} - \frac{1}{\pi}} < P(p)$, and if we denote the constant with $A = e^{\frac{k}{\pi} - \frac{k+1}{\pi} - \frac{1}{\pi}}$ we have $A \cdot e^{\frac{k}{p}} < P(p)$. Now if we denote with
$B(X) = P(X^k)$ we know that $\lim_{x \to \infty} \frac{e^x}{B(x)} = 0$. This means that for p big enough it holds $A \cdot e^{\sqrt{p}} > B(\sqrt{p})$ which is in contradiction with $A \cdot e^{\sqrt{p}} < P(p)$ so our assumption $\deg(Q) \leq \deg(P)-1$ fails. Thus $\deg(Q) \leq \deg(P)$, so $\deg(Q) = \deg(P)$.

Next, we prove that $P(0) = 0$. Assume by contradiction that $P(0) \neq 0$. If we take a prime $q > |P(0)|$, by the property above, we have $P(q) \equiv P(0)(\text{mod } q)$ which means that $(P(q), q) = 1$. According to Dirichlet’s theorem, the arithmetical progression $q + rP(q)$ contains many infinitely prime numbers. Let $q_m = q + r_m P(q)$ be the m-th prime in this sequence. We have that

$$P(q + r_m P(q)) \equiv P(q)(\text{mod } P(q)),$$

so $P(q)$ divides $P(q_m)$. Since $\frac{\phi(a)}{a} = \prod_{q \text{ prime } \frac{a}{q}} \left(1 - \frac{1}{q}\right)$ one can easily deduce that for $d|a$ one has $\frac{\phi(a)}{a} \leq \frac{\phi(d)}{d}$. This implies $\frac{\phi(P(q_a))}{P(q_a)} \leq \frac{\phi(P(q))}{P(q)}$ which is equivalent to $\frac{Q(q)}{P(q)} \leq \frac{\phi(P(q))}{P(q)}$.

Let us note that $\lim_{s \to -\infty} q_s = +\infty$. We know that Q and P have the same degree and both are monic polynomials, so $\lim_{x \to +\infty} \frac{Q(x)}{P(x)} = 1$. This means that $\lim_{k \to +\infty} \frac{Q(q_k)}{P(q_k)} = 1$.

Passing to limit when $s \to \infty$ in $\frac{\phi(P(q_s))}{P(q_s)} \leq \frac{\phi(P(q))}{P(q)}$ or $P(q) \leq \phi(P(q))$. We conclude that $P(q) = 1$. But this can not hold for many infinitely primes q, otherwise $P \equiv 1$, in contradiction with our assumption that P is nonconstant.

Let $P(X) = X^j R(X)$ with $R(0) \neq 0$. We now have $\phi(P(q)) = \phi(q^j R(q))$ and for $q > |R(0)|$ we have $(q, R(q)) = 1$ so

$$\phi(P(q)) = \phi(q^j) \cdot \phi(R(q)) = q^{j-1}(q-1) \cdot \phi(R(q)).$$

Now let $Q(X) = X^i S(X)$ cu $S(0) \neq 0$. We have that $q^{j-1}|q^j S(q)$. If $i < j - 1$ then $q|S(q)$ and since $S(q) \equiv S(0)(\text{mod } q)$ we have $q|S(0)$ for an infinity of primes.

This leads to $S(0) = 0$ contradiction with $S(0) \neq 0$, therefore $i \geq j - 1$. We also have $q - 1|q^j S(q)$ and since $(q, q - 1) = 1$ we get $q - 1|S(q)$. We know that $S(q) \equiv S(1)(\text{mod } q - 1)$ which combined with $q - 1|S(q)$ we get $q - 1|S(1)$, for all primes $q > |R(0)|$. Thus $S(1) = 0$. This means $Q(X) = X^i (X - 1) S_1(X)$ so $\phi(R(q)) = q^{i-j+1} S_1(q)$ and if we denote $X^{i-j+1} S_1(X) = L(x)$ we have a monic polynomial such that $\phi(R(q)) = L(q)$.

Reasoning the same for R and L if R is nonconstant we would have $R(0) = 0$ contradiction with $R(0) \neq 0$. Thus R is constant and $R \equiv 1$. We conclude that the only solution is $P(X) = X^j$ with $j \geq 1$.

Now for the case when $f = \sigma(n)$, we assume that $\deg(P) > \deg(Q)$. Since $\sigma(n) > n, \forall n \geq 2$ it follows that $Q(p) > P(p)$ for all prime number. From $\deg(P) > \deg Q$ we deduce that $P(x) - Q(x)$ is nonconstant and monic which implies $\lim_{x \to \infty} (P(x) - Q(x)) = +\infty$. But this last assertion contradicts the inequality $P(p) - Q(p) < 0, \forall p$ prime number. Thus $\deg(P) \leq \deg(Q)$.

Now, we will prove the converse inequality \(\deg(Q) \leq \deg(P) \). Assume by contradiction that \(\deg(Q) > \deg(P) + 1 \). Then the polynomial \(2Q(x) - xP(x) \) is nonconstant and like we did above, we have that \(\lim_{x \to \infty} (2Q(x) - xP(x)) = \infty \), so for sufficiently large prime number \(p \) we have \(2Q(p) - pP(p) \geq 0 \) which is equivalent to \(\frac{Q(p)}{P(p)} \geq \frac{p}{2} \) and further to \(\frac{\sigma(P(p))}{P(p)} \geq \frac{p}{2} \).

Since \(\lim_{x \to \infty} P(x) = \infty \), there is a \(p_0 \) such that for all primes \(p \geq p_0 \) we would have \(P(p) \geq 7 \). Using Theorem 1.1 (part (1)) we have \(\frac{\sigma(P(p))}{P(p)} \leq \log P(p) \).

Combining with \(\frac{\sigma(P(p))}{P(p)} \geq \frac{p}{2} \) we obtain \(\log P(p) > \frac{p}{2} \) for all primes \(p \geq p_0 \).

Next we just have to notice that \(\lim_{x \to \infty} \frac{\log P(x)}{x} = \lim_{x \to \infty} \frac{P'(x)}{P(x)} = 0 \). This provides the immediate contradiction to \(\frac{\log P(p)}{p} > \frac{1}{2} \) for all primes \(p \geq p_0 \).

Thus the assumption \(\deg(Q) > \deg(P) + 1 \) fails so \(\deg(Q) \leq \deg(P) \) and corroborating with \(\deg(Q) \geq \deg(P) \), we conclude that \(\deg(Q) = \deg(P) \).

Let us note that \(\lim q_s = +\infty \). We know that \(Q \) and \(P \) have the same degree and both are monic polynomials so \(\lim_{x \to +\infty} \frac{Q(x)}{P(x)} = 1 \). This means that \(\lim_{k \to +\infty} \frac{Q(q_k)}{P(q_k)} = 1 \).

Passing to limit when \(s \to \infty \) in \(\frac{\sigma(P(q_s))}{P(q_s)} \geq \frac{\sigma(P(q))}{P(q)} \), we obtain \(1 \geq \frac{\sigma(P(q))}{P(q)} \) so \(P(q) \geq \sigma(P(q)) \) which means \(P(q) = 1 \) for all prime numbers \(q \) so \(P \equiv 1 \). Thus our assumption was false and let \(P(X) = X^j R(X) \) with \(R(0) \neq 0 \). Now, we have \(\sigma(P(q)) = \sigma(q^j R(q)) \) and for \(q > |R(0)| \) it follows that \((q, R(q)) = 1 \) so \(\sigma(P(q)) = (q^j + q^{j-1} + \ldots + 1) \sigma(R(q)) \).

Let \(D(X) = X^j + X^{j-1} + \ldots + 1 \). Since \(Q \) and \(D \) are monic we know that there are \(C(X) \) and \(T(X) \) in \(\mathbb{Z}[X] \) such that \(Q(X) = D(X) \cdot C(X) + T(X) \) where \(\deg(T) < \deg(D) \). We know that \(D(q)|Q(q) \) and it implies \(D(q)|T(q) \).
Now since \(\deg(T) < \deg(D) \), we obtain \(\lim_{x \to \infty} \frac{T(x)}{D(x)} = 0 \). This means that \(|T(q)| < D(q)\) for all large \(q \) and from \(D(q)|T(q) \) we can conclude that \(T(q) = 0 \) for such primes. So \(T \) has an infinity of roots thus \(T \equiv 0 \).

We have \((q^j + q^{j-1} + \ldots + 1)\sigma(R(q)) = D(q)\sigma(R(q)) = D(q)C(q)\) which leads to \(\sigma(R(q)) = C(q) \) and since \(R(0) \neq 0 \) we obtain \(R \equiv 1 \), by looking at the argument for the previous case. We conclude again that \(P(X) = X^j \) with \(j \geq 1 \).

The last case is \(f = \phi(n) \). From Theorem 1.1 (part (2)), we have \(Q(p) = o(P^\epsilon(p)) \) which is equivalent to the fact that \(\lim_{l \to \infty} \frac{Q(p)}{P^\epsilon(p)} = \lim_{x \to \infty} \frac{Q(x)}{P^\epsilon(x)} \) is finite for all \(\epsilon > 0 \).

Thus we deduce that \(Q \) is constant, otherwise we could have chosen \(\epsilon = \frac{\deg(Q)}{2\deg(P)} \) which provides us a contradiction.

Now let us assume that \(P(0) \neq 0 \). Again, we employ the well-known property of polynomials which states that for all \(a, b \in \mathbb{Z} \) one has \(a - b|f(a) - f(b) \). For a fixed prime \(q > |P(0)| \), by the property above, we have \(P(q) \equiv P(0)(\mod q) \) which means that \((P(p), p) = 1 \). According to Dirichlet’s theorem, the arithmetical progression \(q + rP(q) \) contains many infinitely prime numbers. Let \(q_m \) be the \(m \)-th prime in this sequence. We have that \(P(q + r_mP(q)) \equiv P(q)(\mod P(q)) \) so \(P(q) \) divides \(P(q_m) \). Now if \(a|b \) and \(a < b \) we have \(d(a) < d(b) \) so if \(P \) is nonconstant \(d(P(q)) < d(P(q_m)) \) which leads to \(Q(q) < Q(q_m) \), which contradicts the fact that \(Q \) is constant.

Thus \(P(X) = X^jR(X) \) with \(R(0) \neq 0 \). We now have \(d(P(q)) = d(q^jR(q)) \) and for \(q > |R(0)| \) we have \(\{q, R(q)\} = 1 \) so \((P(q)) = d(q^j) \cdot d(R(q)) = (j + 1) \cdot d(R(q)) \). This means that we have \(d(R(q)) = \frac{Q(q)}{j + 1} \) so the polynomial \(R \) has the property that \(d(R(q)) \) is constant for all \(q \) but \(R(0) \neq 0 \) thus it is constant. So \(f(X) = cX^j \) with \(j \geq 1 \).

Remark. In the case when \(f = \phi(n) \), we would have obtained easier the fact that the polynomials have the same degree using the result from Theorem 1.1 (part (5)).

Proof of Theorem 1.5. From Theorem 1.1 (part (3)) we know that \(\lim_{n \to \infty} \frac{\pi(n)}{n} = 0 \) so \(\lim_{p \to \infty} \frac{\pi(P(p))}{P(p)} = \lim_{p \to \infty} \frac{\pi(P)}{P(p)} = 0 \) which is equivalent to \(\lim_{x \to \infty} \frac{Q(x)}{P(x)} = 0 \). We deduce that \(\deg(Q) \leq \deg(P) - 1 \).

Again from Theorem 1.1 (part (3)), we have \(\lim_{n \to \infty} \frac{\pi(n) \log n}{P(p)} = 1 \) and thus \(\lim_{p \to \infty} \frac{Q(p) \log P(p)}{P(p)} = 1 \) which is equivalent to \(\lim_{x \to \infty} \frac{Q(x) \log P(x)}{P(x)} = 1 \).

Now since \(\deg(Q) \leq \deg(P) - 1 \) the limit \(\lim_{x \to \infty} \frac{x Q(x)}{P(x)} \) is finite. Moreover we have \(\lim_{x \to \infty} \frac{\log P(x)}{x} = \lim_{x \to \infty} \frac{P'(x)}{P(x)} = 0 \) applying L’Hopital rule and using the fact that \(\deg(P') < \deg(P) \). Combining these two observations, by multiplying, we get
$\lim_{x \to \infty} \frac{Q(x) \log P(x)}{P(x)} = 0$. This ends the proof of the theorem.

In [9] and [10] many properties are proved about arithmetical functions especially asymptotic estimates of composition of functions like: $\phi(\sigma(n))$, $\sigma(\sigma(n))$ or $d(\sigma(n))$. In the proof of the theorem that will follow, we shall use our idea from the proof of Theorem 1.1.

Proof of Theorem 1.6. In all cases we proceed by contradiction. This means that $g(\sigma(n)) = \frac{P(n)}{Q(n)}$, $\forall n \geq 1$. Firstly, we deal with the case when $g = \phi(n)$.

We shall proceed as in the proof of Theorem 1.1. In [3] and [9] it is proved that $\lim_{n \to \infty} \frac{n}{\sigma(n)} = 0$ except for a set of density 0. This implies that $\lim_{n \to \infty} \frac{P(n)}{nQ(n)} = 0$ and thus $\deg(P) < 1 + \deg(Q)$. On the other hand, since $\lim_{n \to \infty} \phi(\sigma(n)) = \infty$, we have that $\lim_{n \to \infty} \frac{P(n)}{nQ(n)} = \infty$ which means that $\deg(P) > \deg(Q)$, contradiction.

For $g = \sigma(n)$. We know from [8] that $\limsup_{n \to \infty} \frac{\sigma(n)}{n} = \infty$ so $\limsup_{n \to \infty} \frac{\sigma(\sigma(n))}{n} = \infty$.

Thus $\lim_{x \to \infty} \frac{P(x)}{xQ(x)} = \infty$ and we deduce that $\deg(P) > \deg(Q) + 1$. Now from Theorem 1.1 (part (1)), we have $\sigma(\sigma(n)) < \sigma(n) \log \sigma(n) < n \log n \log n + \log \log n$ for $n \geq 7$. It follows immediately that $\lim_{n \to \infty} \frac{\sigma(\sigma(n))}{n^2} = 0$ and thus $\lim_{x \to \infty} \frac{P(x)}{x^2Q(x)} = \infty$ which gives $\deg(P) < \deg(Q) + 2$, and this combined with $\deg(P) > \deg(Q) + 1$ leads to a contradiction.

Finally, when $g = d(n)$, we have (see [8], [4]) that $\lim_{n \to \infty} \frac{d(n)}{2\sqrt{n}} = 0$ and $\sigma(\sigma(n)) < n \log n + \log \log n$ for $n \geq 7$. It follows immediately that $\lim_{n \to \infty} \frac{\sigma(\sigma(n))}{n^2} = 0$ and thus $\lim_{x \to \infty} \frac{P(x)}{x^2Q(x)} = 0$ so we have $\deg(P) \leq \deg(Q)$.

Now we shall prove that $\limsup_{n \to \infty} d(\sigma(n)) = \infty$. Let p_1, \ldots, p_k the first k prime numbers. According to Dirichlet’s theorem, the arithmetic progression $rp_1p_2 \ldots p_k - 1$ with $r \in \mathbb{N}$ contains an infinity of primes and let q be one of them. We have that $d(\sigma(q)) = d(q + 1) = d(rp_1p_2 \ldots p_k) \geq 2^k$. Letting k be arbitrarily large we get the desired result. Using $\limsup_{n \to \infty} d(\sigma(n)) = \infty$, we deduce $\lim_{x \to \infty} \frac{P(x)}{xQ(x)} = \infty$ so $\deg(P) > \deg(Q)$. This obviously contradicts $\deg(P) \leq \deg(Q)$.

Acknowledgement. The authors are very grateful to professor Gabriel Mincu for his patience in reading the manuscript and for his crucial suggestions that improved the initial version of this article and to Gabriel Dospinescu for some useful remarks. This paper has been completed while the first author was a visiting student at Central European University, Budapest. C.L is indebted to the Department of
Mathematics from CEU for hospitality during February-May 2010. Many thanks also to ‘Dinu Patriciu’ foundation for support.

REFERENCES

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO–70109, Bucharest and University of Craiova, Faculty of Mathematics, Str. A.I. Cuza 10, RO–200585, Craiova, Romania
E–mail address: lupucezar@yahoo.com, lupucezar@gmail.com

University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO–70109, Bucharest, Romania
E–mail address: matei.vld@yahoo.co.uk, matei.vld@gmail.com