Math 1540 Advanced Calculus 2
Midterm #1 (Friday, Feb. 20, 2015)

4 problems in 4 pages, each has 25 points

1. Define \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) by \(f(0, 0) = 0 \) and

\[
f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}, \quad \text{if } (x, y) \neq (0, 0).
\]

Whether \(f \) is differentiable at \((0, 0)\)?
2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Prove that there is a continuous one-to-one function g from $[0, 1]$ into \mathbb{R}^2 such that the composite function $f \circ g$ is constant.

Hint: We may assume f is not constant, otherwise this is trivial. So there is $(x_0, y_0) \in \mathbb{R}^2$ such that $Df(x_0, y_0) \neq 0$. Consider the function $F : \mathbb{R}^2 \to \mathbb{R}$ given by

$$F(x, y) = (f(x, y), y).$$

Show that F has a local inverse G. Let $a = f(x_0, y_0)$ and γ be a one-to-one map of $[0, 1]$ to a small enough neighborhood of y_0 in \mathbb{R}. Show that $g(t) = G(a, \gamma(t))$ has the desired property.
3. Let \vec{F} be the vector field $\langle x^2 + y - 4, 3xy, 2xz + z^2 \rangle$ on \mathbb{R}^3. Compute $\nabla \times \vec{F}$ (the curl of \vec{F}) and the integral of $\nabla \times \vec{F}$ over the surface $H = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 16, \ z \geq 0 \}$.

Hint: Let $D = \{ (x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 \leq 16 \}$. Note that H and D have the same boundary. Apply Stoke’s theorem twice to transform an integral over H to an integral over D.
4. (Bonus Problem) Let $M(n)$ be the space of $n \times n$ matrices over \mathbb{R}, identified in the usual way with \mathbb{R}^{n^2}. Let the function F from $M(n)$ into $M(n)$ be defined by

$$F(X) = X + X^2.$$

Prove that the range of F contains a neighborhood of the origin.

Hint: We have

$DF(X)Y = \lim_{h \to 0} \frac{F(X + hY) - F(X)}{h}$.

Show that $DF(0)$ is invertible.