Test 2

Note: Except perhaps for problem 4(b), all the answers are “one-liners” and problem 4(b) is not much longer.

1) Show that if \(f : [a, b) \to (a, b) \) is a bijection, then \(f((a, b)) \) is not connected. Deduce that \([a, b)\) and \((a, b)\) are not homeomorphic.

2) Let \(A \) and \(B \) be two compact subsets of the metric space \((M, d)\). Show that there are \(a_0 \in A \) and \(b_0 \in B \) such that \(d(a_0, b_0) \leq d(a, b) \) for every \((a, b) \in A \times B\). (Hint: compactness of \(A \times B \) and continuity of the distance \(d\)).

3) Let \((M, d_M)\) and \((N, d_N)\) be metric spaces with \(N \) discrete (for instance, \(N = \mathbb{N} \) or \(N = \mathbb{Z} \)) and let \(f : M \to N \) be continuous. Given any \(y \in N\), show that the set \(f^{-1} \{y\}\) is open and closed in \(M \) (hint: in a discrete space, points are open and closed). Deduce that if \(M \) is connected and \(f \) is continuous, then \(f \) is constant.

4) Let \((M, d)\) be a metric space. As usual, the graph \(\Gamma \) of a function \(f : M \to \mathbb{R} \) is defined by

\[
\Gamma = \{(x, f(x)) : x \in M \} \subset M \times \mathbb{R}.
\]

(a) Show that if \(f \) is continuous and \(M \) is compact, then \(\Gamma \) is compact.
(b) Show that if \(\Gamma \) is compact, then \(M \) is compact (trivial) and \(f \) is continuous.

5) Assume that \(f : \mathbb{R} \to \mathbb{R} \) is continuous, that \(f'(x) \) exists for every \(x \neq 0 \) and that \(\lim_{x \to 0} \frac{f'(x)}{x} = L \in \mathbb{R} \) exists. Show that \(f \) is differentiable at 0 and that \(f'(0) = L \). (Hint: mean-value theorem.)