Math 1540 Advanced Calculus 2
Homework #4 (Due Friday, Mar. 20, 2015)

1. If \(\{f_n\} \) is a sequence of measurable functions, prove that the set of points \(x \) at which \(\{f_n(x)\} \) converges is measurable.

2. If a bounded function \(f \) on \([a, b] \) is Riemann integrable and if \(F(x) = \int_a^x f(t) dt \), prove that \(F'(x) = f(x) \) almost everywhere on \([a, b] \).

3. Suppose \(f \in L^2(\mu), g \in L^2(\mu) \). Prove that
\[
\left|\int f \bar{g} \, d\mu\right|^2 = \int |f|^2 \, d\mu \int |g|^2 \, d\mu
\]
if and only if there is a constant \(c \) such that either \(g(x) = cf(x) \) or \(f(x) = cg(x) \) almost everywhere.

4. Suppose \(\{n_k\} \) is an increasing sequence of positive integers and \(E \) is the set of all \(x \in (-\pi, \pi) \) at which \(\{\sin n_k x\} \) converges. Prove that \(m(E) = 0 \).

 \textit{Hint: For every } A \subset E, \int_A \sin n_k x \, dx = 0, \text{ and }
\[2 \int_A (\sin n_k x)^2 \, dx = \int_A (1 - \cos 2n_k x) \, dx \to m(A) \quad k \to \infty.\]

5. Prove that if \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a Lipschitz function, i.e. \(|f(x) - f(y)| \leq L|x - y|\) for all \(x, y \in \mathbb{R}^n \) and some \(L > 0 \) and \(E \subset \mathbb{R}^n \) is a set of measure zero, then \(f(E) \subset \mathbb{R}^n \) has measure zero.

6. Assume that \(f : [0, 1] \to [0, 1] \) is a continuous function such that the set \(\{x \in [0, 1] : f(x) = 1\} \) has measure zero. Prove directly (without using any results like monotone or dominated convergence theorem) that
\[
\lim_{n \to \infty} \int_0^1 f(x)^n \, dx = 0.
\]

7. Let \(f : [0, 1]^2 \to [0, \infty) \) be Riemann integrable over \([0,1]^2\). Suppose that
\[
\int_{[0,1]^2} f = 0.
\]
Prove that \(\{(x, y) \in [0,1]^2 : f(x,y) > 0\} \) is a set of measure zero.
8. Suppose \(\{f_n\} \) is a sequence of functions in \(L^1(\mu) \) and \(f_n \to f \) uniformly. If \(\mu(X) < \infty \), then \(f \in L^1(\mu) \) and \(\int f_n \to \int f \).

9. If \(f \in L^1(m) \) and \(F(x) = \int_{-\infty}^{x} f(t)dt \), then \(F \) is continuous on \(\mathbb{R} \). Here \(m \) is the Lebesgue measure.

 Hint: Use Dominated Convergence Theorem.

10. Let \(\mu \) be counting measure on the set \(\mathbb{N} \) of all natural numbers. Interpret Fatou’s Lemma and the monotone convergence theorem as statements about infinite series.

11. Let \(f(x) = x^{-1/2} \) if \(0 < x < 1 \) and \(f(x) = 0 \) otherwise. Let \(\{r_n\} \) be an enumeration of the rational numbers, and set

 \[g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n). \]

 Prove

 (a) \(g \in L^1(m) \) and compute \(\int_{-\infty}^{\infty} g(x)dx \).
 (b) \(g < \infty \) a.e.
 (c) \(g \) is discontinuous at each point and unbounded on any interval \((a, b)\).
 (d) \(g^2 \) is not integrable on any interval.

 Hint: For (a) and (c), use Monotone Convergence Theorem.

12. Suppose \(\mu(X) < 1 \). If \(f \) and \(g \) are complex-valued measurable functions on \(X \), define

 \[\rho(f, g) = \int \frac{|f - g|}{1 + |f - g|} d\mu. \]

 Then \(\rho \) is a metric on the space of measurable functions (we identify functions that are equal a.e.), and \(f_n \to f \) with respect to this metric if and only if \(f_n \to f \) in measure.