Problem 1. Let \(f : [0, 1] \to \mathbb{R} \) be a function. Show that \(f \) is continuous if and only if the graph of \(f \) is a compact set in \(\mathbb{R}^2 \).

University of California Davis Preliminary Exam, 2010

Problem 2. Show that there is a unique continuous real-valued function \(f : [0, 1] \to \mathbb{R} \) such that
\[
f(x) = \sin x + \int_0^1 \frac{f(y)}{e^x + y+1} \, dy.
\]

Berkeley Preliminary Exam, 1984

Problem 3. Let \((X, d)\) be a nonempty complete metric space. Let \(S : X \to X \) be a given mapping and write \(S^2 \) for \(S \circ S \), i.e. \(S^2(x) = S(S(x)) \). Suppose that \(S^2 \) is a contraction. Show that \(S \) has a unique fixed point.

Berkeley Preliminary Exam, 1998

Problem 4. Let \((X, d)\) be a compact metric space and \(f : X \to X \) be a contractive mapping, i.e for all \(x, y \in X \), \(x \neq y \),
\[
d(f(x), f(y)) < d(x, y).
\]
Prove that \(f \) has unique fixed point in \(X \).

University of Pittsburgh Preliminary Examination, 2010

Problem 5. Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous and surjective.

(a) Is \(f \) open?
(b) Show that \(f \) is open if and only if \(f \) is an homomorphism.

Problem 6. (a) Show that any monotonic and onto function \(f : \mathbb{R} \to \mathbb{R} \) is continuous.
(b) Show that any continuous and one-to-one function \(f : \mathbb{R} \to \mathbb{R} \) is monotonic.
(c) Find all continuous functions \(f : \mathbb{R} \to \mathbb{R} \) such that \(f(f(x)) = -x \), for all \(x \in \mathbb{R} \).
Problem 7. Let \(f : (-\infty, \infty) \to \mathbb{R} \) be continuous and \(\lim_{x \to \infty} f(f(x)) = \infty \). Prove that \(\lim_{x \to \infty} |f(x)| = \infty \).

University of Pittsburgh Preliminary Exam, 2015

Problem 8. (a) Prove that any continuous mapping from the unit interval into the unit interval has a fixed point.
(b) [Knaster] Prove that any nondecreasing function \(f : [a, b] \to [a, b] \) has a fixed point.

Problem 9. Prove that any \(\alpha \)-Holder continuous function \(f : \mathbb{R} \to \mathbb{R} \), with \(\alpha > 1 \) is constant.

University of Lincoln-Nebraska Qualifying Exam, 1999

Problem 10. Suppose that \(f : [0, 1] \to \mathbb{R} \) is continuous and has local maximum at each point in \([0, 1]\). Prove that \(f \) is constant.

Ohio State University Qualifying Exam, 2005