Problem 1. Evaluate

\[\int \int_D e^{-x^2-y^2} \, dx \, dy, \]

where \(D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\} \).

Problem 2. Let \(\Omega \subset \mathbb{R}^3 \) be open, and suppose \(u, v \in C^2(\Omega) \). Consider the following vector field

\[F = u \nabla v. \]

(i) Prove that

\[\text{div} \, F = \nabla \cdot F = u \Delta v + \nabla u \nabla v, \]

where \(\Delta v = \nabla \cdot (\nabla v) = \text{div}(\nabla v) = \sum_{i=1}^{n} \frac{\partial^2 v}{\partial x_i^2} \) is the Laplace operator.

(ii) If \(\Omega \) is bounded with smooth boundary, prove the Green’s first identity,

\[\int_{\Omega} u \Delta v \, dV + \int_{\Omega} \nabla v \nabla u \, dV = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} \, dA, \]

where \(\frac{\partial v}{\partial \nu} = \nabla v \cdot \nu \) is the outward normal derivative (Thus \(\frac{\partial v}{\partial \nu} \) is the directional derivative of \(v \) in the direction of the outward normal to \(\partial \Omega \)).

(iii) Interchange \(u \) and \(v \), subtract the resulting formula from the first one, to obtain Green’s second identity,

\[\int_{\Omega} (u \Delta v - v \Delta u) \, dV = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) \, dA. \]

(iv) Assume \(v \) is harmonic and \(u = 1 \) on \(\Omega \). Show that

\[\int_{\partial \Omega} \frac{\partial v}{\partial \nu} \, dA = 0. \]
Problem 3. Let $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and let u be a non-constant real-valued C^2 function on a neighborhood of D which satisfies $u(x, y) = 0$ for all $(x, y) \in \partial D$. Prove that

$$\int \int_D u \Delta u dA < 0.$$

University of Pittsburgh Preliminary Examination, 2009

Problem 4. Suppose $f \in C^2(\mathbb{R}^3)$ is constant in a neighborhood of the boundary of the ball $B \subseteq \mathbb{R}^3$. Prove that

$$\int \int \int_B (f_{xx} + f_{yy} + f_{zz}) dV = 0.$$

University of Pittsburgh Preliminary Examination, 2009

Problem 5. Prove that

$$\int_0^1 \int_0^1 \frac{1}{1 - xy} dxdy = \sum_{n=1}^{\infty} \frac{1}{n^2},$$

where the integral is understood as an improper integral $\lim_{t \to 1-} \int_0^t \int_0^t \ldots$

EXTRA CREDIT CHALLENGE !!! Deduce from here the Euler celebrated series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Problem 6. Let $x = (x_1, x_2) \in \mathbb{R}^2$ and $|x| = \sqrt{x_1^2 + x_2^2}$. Consider $D = \{x \in \mathbb{R}^2 : |x| \leq 1\}$ and $f : D \to \mathbb{R}$ be continuous on D. Show that

$$\lim_{n \to \infty} \int \int_D (n + 2)|x|^n f(x) dA = \int_0^{2\pi} f(\cos t, \sin t) dt.$$

University of Pittsburgh Preliminary Examination, 2011

Problem 7. Let $u : \mathbb{R}^2 \to \mathbb{R}$ be a C^2 function such that u is non-constant on the unit disc $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and $u = 0$ on ∂D. Suppose that for some $\lambda \in \mathbb{R}$ we have

$$-\Delta u(x, y) = \lambda u(x, y),$$

for all $(x, y) \in D$. Show that $\lambda > 0$.

Berkeley Preliminary Examination, 1994
Problem 8. Let $Q \in C^\infty(\mathbb{R}^n)$ real-valued linear mapping such that $Qf \geq 0$ whenever $f \in C^\infty(\mathbb{R}^n)$ satisfies $f(0) = 0$ and $f(x) \geq 0$ in a neighborhood of 0. Prove that there are real numbers a_{ij}, b_i and c such that

$$Qf = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j}(0) + \sum_{i=1}^{n} b_i \frac{\partial f}{\partial x_i}(0) + cf(0).$$

Problem 9. Let D be the closed unit disc centered at $(0,0)$ in \mathbb{R}^2. Prove that if $f : D \to \mathbb{R}$ is a continuous function, then

$$\left| \int \int_{D} e^{x^2+y^2} f(x,y) dxdy \right| \leq \sqrt{\frac{\pi}{2}} (e^2 - 1) \cdot \left(\int \int_{D} f^2(x,y) dxdy \right)^{1/2}.$$

Problem 10. Let $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1 \}$ and $f \in C^\infty(\mathbb{R}^2)$. Suppose that $f(x,y) = 0$ for all $(x,y) \in \partial D$. Prove that

$$\left| \int \int_{D} f(x,y) dA \right| \leq \frac{\sqrt{\pi}}{8} \left(\int \int_{D} |\nabla f(x,y)|^2 dA \right)^{1/2}.$$