ON A ERDOS INSCRIBED TRIANGLE INEQUALITY REVISITED

CEZAR LUPU, ŞTEFAN SPĂTARU

Abstract. In this note we give a refinement of an inequality obtained by Torrejon [10] between the area of a triangle and that of an inscribed triangle. Our approach is based on using complex numbers and some elementary facts on geometric inequalities.

1. Introduction and Main result

Let us consider a triangle ABC on each of the sides BC, CA and AB and fix arbitrary points A_1, B_1, C_1. As pointed out in [10], [7] a question with a long history is the following Erdos-Debrunner inequality:

\[\min\{\text{area}(AC_1B_1); \text{area}(C_1BA_1); \text{area}(B_1AC)\} \leq \text{area}(A_1B_1C_1). \]

\[\mathcal{M}_{-1}\{\text{area}(AC_1B_1); \text{area}(C_1BA_1); \text{area}(B_1AC)\} \leq \text{area}(A_1B_1C_1), \]

where \mathcal{M}_{-1} denotes the harmonic mean of the areas of triangles mentioned in the above inequality. Moreover, Janous formulated a more general question which is extended and solve by Mascioni [7], [8]. Using a different method, Frenzen, Ionaşcu and Stănică [5] proved Janous conjectures independently of Mascioni.

The purpose of this note is to extend the result obtained by Torrejon [10] regarding the areas of triangles $A_1B_1C_1$ and ABC when the points A_1, B_1, C_1 satisfy a certain metric property. In fact our main result is given by the following

Theorem 1.1. Let ABC be a triangle and let A_1, B_1, C_1 be on $BC = a$, $CA = b$ and $AB = c$ respectively with none of A_1, B_1, C_1 coinciding with a vertex of ABC. If

\[
\frac{AB + BA_1}{AC + CA_1} = \frac{BC + CB_1}{AB + AB_1} = \frac{AC + AC_1}{BC + BC_1} = \alpha,
\]

then

\[
\text{area}(A_1B_1C_1) \leq \frac{9abc}{4(a + b + c)(a^2 + b^2 + c^2)} \left(\text{area}(ABC) + s^4 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 \text{area}(ABC)^{-1} \right),
\]

Key words and phrases. Erdos-Debrunner inequality, Schur’s inequality, area of an inscribed triangle.

2010 Mathematics Subject Classification. 26D15, 51Fxx, 97G30, 97G70.
where s is the semi-perimeter of triangle ABC.

When $\alpha = 1$ we obtain

Corollary 1.2. ([6]) Let ABC be a triangle and let A_1, B_1, C_1 be on $BC = a$, $CA = b$ and $AB = c$ respectively with none of A_1, B_1, C_1 coinciding with a vertex of ABC. If

$$
\frac{AB + BA_1}{AC + CA_1} = \frac{BC + CB_1}{AB + AB_1} = \frac{AC + AC_1}{BC + BC_1} = \alpha,
$$

then

$$
\frac{\text{area}(A_1B_1C_1)}{\text{area}(ABC)} \leq \frac{9abc}{4(a + b + c)(a^2 + b^2 + c^2)}.
$$

Clearly, by the Arithmetic-Geometric mean inequality, we have

$$(a + b + c)(a^2 + b^2 + c^2) \geq 9abc,$$

and by Theorem 1.1 we obtain

Theorem 1.3. ([10]) Let ABC be a triangle and let A_1, B_1, C_1 be on BC, CA, AB, respectively, with none of A_1, B_1, C_1 coinciding with a vertex of ABC. If

$$
\frac{AB + BA_1}{AC + CA_1} = \frac{BC + CB_1}{AB + AB_1} = \frac{AC + AC_1}{BC + BC_1} = \alpha,
$$

then

$$
4 \text{area}(A_1B_1C_1) \leq \text{area}(ABC) + s^4 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 \text{area}(ABC)^{-1},
$$

where s is the semi-perimeter of triangle ABC.

When $\alpha = 1$ we derive Aassila’s inequality

Corollary 1.4. ([1]) Let ABC be a triangle, and let A_1, B_1, C_1 be on BC, CA, AB, respectively, with none of A_1, B_1, C_1 coinciding with a vertex of ABC. If

$$
AB + BA_1 = AC + CA_1,
$$

$$
BC + CB_1 = AB + AB_1,
$$

$$
AC + AC_1 = BC + BC_1,
$$

then

$$
4 \text{area}(A_1B_1C_1) \leq \text{area}(ABC).
$$

Our approach in computing the area of the triangle $A_1B_1C_1$ will be different from Torrejon’s one [10] and it is based on the geometry of complex numbers and combining with a straightforward geometric inequality we obtain the conclusion of the main result.
2. Proof of Theorem 1.1

First of all, we prove the following equality:

\[
\text{area}(A_1B_1C_1) = S \cdot \frac{2(s - a)(s - b)(s - c) + s^2 \cdot \left(\frac{a-1}{a+1}\right)^2(a + b + c)}{abc}.
\]

We use complex numbers. For simplicity denote by \(a, b, c\) the sidelengths of triangle \(ABC\), \(s\) its semiperimeter, \(S\) its area, \(z_A, z_B, z_C\) the affixes of the points \(A, B, C\) and by \(z_{A_1}, z_{B_1}, z_{C_1}\) the affixes of the points \(A_1, B_1, C_1\).

First of all, \(2s = a + b + c = (AB + AB_1) + (BC + CB_1) = (\alpha + 1)(c + AB_1)\) and, consequently \(AB_1 = \frac{2s}{\alpha + 1} - c\) and

\[CB_1 = CB - AB_1 = b - \frac{2s}{\alpha + 1} + c = 2s - a - \frac{2s}{\alpha + 1} = \frac{2s\alpha}{\alpha + 1} - a\]

Analogously we have

\[BC_1 = \frac{2s}{\alpha + 1} - a,\]
\[CA_1 = \frac{2s}{\alpha + 1} - b,\]
\[BA_1 = \frac{2s\alpha}{\alpha + 1} - c,\]
\[AC_1 = \frac{2s\alpha}{\alpha + 1} - b,\]

Denote \(z_{A_1}, z_{B_1}, z_{C_1}\) the affixes of \(A_1, B_1, C_1\), and they are given by

\[z_{A_1} = \frac{(2s_{\alpha+1} - b)z_B + (2s_{\alpha+1} - c)z_C}{a},\]
\[z_{B_1} = \frac{(2s_{\alpha+1} - c)z_C + (2s_{\alpha+1} - a)z_A}{b},\]
\[z_{C_1} = \frac{(2s_{\alpha+1} - a)z_A + (2s_{\alpha+1} - b)z_B}{c}.
\]

Now the formula for the area of triangle \(A_1B_1C_1\) is

\[2\text{area}(A_1B_1C_1) = \text{Im}\left(\sum_{cyc} z_{A_1}z_{B_1}\right) = \]
\[= \text{Im}\left(\sum_{cyc} \frac{(2s_{\alpha+1} - b)\overline{z_B} + (2s_{\alpha+1} - c)\overline{z_C}}{a}, \frac{(2s_{\alpha+1} - c)z_C + (2s_{\alpha+1} - a)z_A}{b}\right)\]
\[= \frac{1}{abc} \cdot \text{Im}\left(\sum_{cyc} \overline{z_B}z_C \left[c\left(\frac{2s}{\alpha + 1} - b\right)\left(\frac{2s}{\alpha + 1} - c\right) + b\left(\frac{2s\alpha}{\alpha + 1} - c\right)\left(\frac{2s\alpha}{\alpha + 1}\right)\right]\right)\]
\[+ \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_C z_B a \left(\frac{2s}{\alpha + 1} - b \left(\frac{2s}{\alpha + 1} - c \right) \right) \right) \]

\[= \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \left[c \left(\frac{2s}{\alpha + 1} - b \left(\frac{2s}{\alpha + 1} - c \right) \right) + b \left(\frac{2s}{\alpha + 1} - c \right) - a \left(\frac{2s}{\alpha + 1} - b \right) \left(\frac{2s}{\alpha + 1} - c \right) \right] \right) \]

\[= \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \left[b \left(\frac{s(1 - \alpha)}{\alpha} + s - b \right) \left(\frac{s(1 - \alpha)}{\alpha} + s - c \right) + c \left(\frac{s(\alpha - 1)}{\alpha} + s - b \right) \left(\frac{s(\alpha - 1)}{\alpha} + s - c \right) \right] \right) \]

\[- a \left(\frac{s(\alpha - 1)}{\alpha} + s - b \right) \left(\frac{s(1 - \alpha)}{\alpha} + s - c \right) \]

\[= \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \left[(s - b)(s - c)(b + c - a) + s \frac{1 - \alpha}{1 + \alpha} \left(b(s - b + s - c) - c(s - b + s - c) + a(s - b - s - c) \right) \right] \right) \]

\[+ s^2 \cdot \left(\frac{1 - \alpha}{1 + \alpha} \right)^2 (b + c + a) \]

\[= \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \left[2(s - a)(s - b)(s - c) + s \frac{1 - \alpha}{1 + \alpha} (ab - ac + ac - ab) + s^2 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 (a + b + c) \right] \right) \]

\[= \frac{1}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \left[2(s - a)(s - b)(s - c) + s^2 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 (a + b + c) \right] \right) \]

\[= \frac{2(s - a)(s - b)(s - c) + s^2 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 (a + b + c)}{abc} \cdot \text{Im} \left(\sum_{\text{cyc}} z_B z_C \right) \]

which is equivalent to

\[\text{area}(A_1 B_1 C_1) = S \cdot \frac{2(s - a)(s - b)(s - c) + s^2 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 (a + b + c)}{abc}, \]

where we used the fact that \(z_A z_A \) and \(z_B z_C + z_C z_B \) are real numbers hence have the imaginary part 0.

Now we have that

\[\frac{abc \cdot s}{2} \cdot \text{area}(A_1 B_1 C_1) = S \cdot s(s - a)(s - b)(s - c) + s^4 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 \cdot S \]

Now using Heron’s formula we finally obtain

\[\frac{abc \cdot s}{2} \cdot \text{area}(A_1 B_1 C_1) = S^3 + s^4 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 \cdot S \]

In this moment, we are left to prove the following inequality

\[\frac{sabc}{2} \geq 4S^2 \cdot \frac{(a + b + c)(a^2 + b^2 + c^2)}{9abc} \]
Using \(abc = 4RS \), we get the following equivalent inequality

\[
2sa^2b^2c^2 \geq 16S^2 \frac{(a + b + c)(a^2 + b^2 + c^2)}{9},
\]

which is successively equivalent to

\[
a^2b^2c^2 \geq 16S^2 \cdot \frac{a^2 + b^2 + c^2}{9},
\]

\[
9R^2 \geq a^2 + b^2 + c^2,
\]

which is evident since the distance between the circumcenter \(O \) and barycenter \(G \) is given by Leibniz identity \(OG^2 = 9R^2 - (a^2 + b^2 + c^2) \) and the proof of inequality (3) ends.

Now, we can conclude

\[
S^3 + s^4 \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 S \geq 4S^2 \cdot \frac{(a + b + c)(a^2 + b^2 + c^2)}{9abc} \text{ area}(A_1B_1C_1),
\]

which is finally equivalent to

\[
\text{area}(A_1B_1C_1) \leq \frac{9abc}{4(a + b + c)(a^2 + b^2 + c^2)} \left(S + s^4 \cdot \left(\frac{\alpha - 1}{\alpha + 1} \right)^2 \cdot S^{-1} \right)
\]

and thus our theorem is proved. □

Remark. In fact, inequality (3) can be rewritten in the following form:

\[
(b + c - a)(c + a - b)(a + b - c) \leq \frac{9a^2b^2c^2}{(a + b + c)(a^2 + b^2 + c^2)}.
\]

By Schur’s inequality,

\[
2(xy + yz + zx) - (x^2 + y^2 + z^2) \leq \frac{9xyz}{x + y + z},
\]

by putting \(x = a^2, y = b^2 \) and \(z = c^2 \), we have

\[
2(a^2b^2 + b^2c^2 + c^2a^2) - (a^4 + b^4 + c^4) \leq \frac{9a^2b^2c^2}{a^2 + b^2 + c^2}
\]

which is equivalent to

\[
(a + b + c)(b + c - a)(c + a - b)(a + b - c) \leq \frac{9a^2b^2c^2}{a^2 + b^2 + c^2},
\]

which gives inequality (4).
REFERENCES

University of Pittsburgh, Department of Mathematics, Pittsburgh, 301 Thackeray Hall, PA 15260, USA and University of Craiova, Department of Mathematics, A. I. Cuza 13, RO–200585, Craiova, Romania

E–mail address: cel47@pitt.edu, lupucezar@gmail.com

International Computer High School of Bucharest, 428 Mihai Bravu St., Sector 3, Bucharest, Romania

E–mail address: spataru_stefan96@yahoo.com