PUTNAM SEMINAR (MATH-1010), FALL 2017
HOMEWORK NO.

LECTURER: CEZAR LUPU

Problem 1. Show that
\[2^n \geq n^2 \]
for all \(n \geq 4 \), and
\[\sum_{k=1}^{n} \frac{1}{k^2} < 2 \]
for all \(n \geq 1 \).

Problem 2. Let \(f \) be a polynomial of degree 2 with integer coefficients. Suppose that \(f(k) \) is divisible by 5 for every integer \(k \). Prove that all coefficients of \(f \) are divisible by 5.

IMC (International Mathematics Competition), 2007

Problem 3. Show that there does not exist a strictly increasing function \(f : \mathbb{N} \to \mathbb{N} \) satisfying \(f(2) = 3 \) and \(f(mn) = f(m)f(n) \) for all \(m, n \in \mathbb{N} \).

Problem 4. Prove that \(f(n) = 1 - n \) is the only integer-valued function defined on the integers that satisfies the conditions:

(i) \(f(f(n)) = n \) for all integers \(n \);
(ii) \(f(f(n + 2) + 2) = n \) for all integers \(n \);
(iii) \(f(0) = 1 \).

Putnam A1, 1992

Problem 5. Find all polynomials \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) such that
\[P(x^2 + 1) = P(x)^2 + 1 \]
and \(P(0) = 0 \).

Putnam A2, 1971

Problem 6. Prove that for any distinct integers \(a_1, a_2, \ldots, a_n \) the polynomial
\[P(x) = (x - a_1)(x - a_2) \cdots (x - a_n) - 1 \]
cannot be written as a product of two nonconstant polynomials with integer coefficients.