Problem 1. Find all continuous functions \(f : [0, 1] \to \mathbb{R} \) such that
\[
\int_0^1 f(x)(x - f(x))\,dx = \frac{1}{12}.
\]

Problem 2. Find all continuous functions \(f : \mathbb{R} \to [1, \infty) \) for which there exists \(a \in \mathbb{R} \) and a positive integer \(k \) such that
\[
f(x)f(2x)\ldots f(nx) \leq an^k,
\]
for every real number \(x \) and positive integer \(n \).

Romanian National Olympiad, 1999

Problem 3. Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function such that \(\int_0^1 f(x)\,dx = 0 \). Show that there exists \(c \in (0, 1) \) such that
\[
f(c) = \int_0^c f(x)\,dx.
\]

Gazeta Matematică, 1992

Problem 4. Find
\[
\lim_{n \to \infty} \frac{1}{n} \int_0^n \frac{x \log(1 + x/n)}{1 + x}\,dx.
\]

American Mathematical Monthly, 2006

Problem 5. Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function, differentiable on \((0, 1)\), with the property that there exists \(\alpha \in (0, 1) \) such that \(\int_0^\alpha f(x)\,dx = 0 \). Prove that
\[
\left| \int_0^1 f(x)\,dx \right| \leq \frac{1 - a}{2} \sup_{x \in (0,1)} |f'(x)|.
\]

Romanian National Olympiad, 1983

Problem 6. Let \(f : [0, 1] \to \mathbb{R} \) be an integrable function such that
\[\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1. \]

Show that
\[\int_0^1 f^2(x) \, dx \geq 4. \]

Romanian National Olympiad, 2004

Problem 7. Evaluate
\[\int_0^1 \frac{\log(1 + x)}{1 + x^2} \, dx. \]

Putnam A5, 2005

Problem 8. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be continuous functions such that \(f(x + 1) = f(x) \) and \(g(x + 1) = g(x) \) for all real numbers \(x \). Prove that
\[\lim_{n \to \infty} \int_0^1 f(x)g(nx) \, dx = \int_0^1 f(x) \, dx \int_0^1 g(x) \, dx. \]

Putnam B3, 1967