Problem 1. If \(f = (f_1, f_2, \ldots, f_n) : [a, b] \to \mathbb{R}^n \) is a continuous function, then we define
\[
\int_a^b f(t) dt = \left\langle \int_a^b f_1(t) dt, \int_a^b f_2(t) dt, \ldots, \int_a^b f_n(t) dt \right\rangle.
\]
Show that
\[
\left\| \int_a^b f(t) dt \right\| \leq \int_a^b \| f(t) \| dt.
\]

Problem 2. Let \(A = [a_{ij}]_{1 \leq i,j \leq n} \) be the matrix of a linear mapping \(A \in L(\mathbb{R}^n; \mathbb{R}^m) \). Prove that the operatorial norm,
\[
\| A \| = \sup_{\| x \| = 1} \| Ax \|
\]
satisfies the inequality
\[
\| A \| \leq \| A \|_{HS} := \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2 \right)^{1/2}
\]
Moreover, if \(A \) and \(B \) are \(n \times n \) matrices, prove that
\[
\| AB \|_{HS} \leq \| A \|_{HS} \| B \|_{HS}.
\]

Problem 3. Prove that to every \(A \in L(\mathbb{R}^n; \mathbb{R}^1) \) corresponds a unique \(y \in \mathbb{R}^n \) such that \(Ax = \langle x, y \rangle \). Prove also that \(\| A \| = \| y \| \).

Problem 4. Suppose \(f \) is differentiable mapping of \(\mathbb{R}^1 \) into \(\mathbb{R}^3 \) such that \(|f(t)| = 1 \) for every \(t \). Prove that \(f(t) \cdot f'(t) = 0 \).

Problem 5. If \(f \) is differentiable mapping of a connected open set \(E \subset \mathbb{R}^n \) into \(\mathbb{R}^m \), and if \(f'(x) = 0 \) for every \(x \in E \), prove that \(f \) is constant on \(E \).

Problem 6. Let \(f : \mathbb{R} \to \mathbb{R} \) be differentiable and \(F : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(F(x, y) = f(xy) \). Prove that
\[\frac{\partial F}{\partial x} = y \frac{\partial F}{\partial y}. \]

Problem 7. Find all points \((x, y) \in \mathbb{R}^2\) where the function
\[f(x, y) = |e^x - e^y|(x + y - 2) \]
is differentiable.

Problem 8.
(a) Prove that the function \(f : \mathbb{R}^2 \to \mathbb{R},\)
\[f(x, y) = \begin{cases}
1 - \cos((x + y)^2) & \text{if } (x, y) \neq (0, 0) \\
\frac{x^2 + y^2}{x^2 + y^2} & \text{if } (x, y) = (0, 0)
\end{cases} \]
is continuous.
(b) Prove that the function \(f : \mathbb{R}^2 \to \mathbb{R},\)
\[f(x, y) = \begin{cases}
x^2 + y^2 - 2x^2y - \frac{4x^6y^2}{(x^4 + y^2)^2} & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } (x, y) = (0, 0)
\end{cases} \]
is continuous.

Problem 9. Define \(f : \mathbb{R}^2 \to \mathbb{R}\) by \(F(x, 0) = 0\) and
\[f(x, y) = \left(1 - \cos \frac{x^2}{y^2}\right) \sqrt{x^2 + y^2}; \ y \neq 0. \]

(a) Show that \(f\) is continuous at \((0, 0)\).
(b) Calculate all the directional derivatives of \(f\) at \((0, 0)\).
(c) Show that \(f\) is not differentiable at \((0, 0)\).

Problem 10. If \(f(0, 0) = 0\) and
\[f(x, y) = \frac{xy}{x^2 + y^2}, \]
if \((x, y) \neq (0, 0),\) prove that the first order partial derivatives \(\frac{\partial f}{\partial x}(x, y)\) and \(\frac{\partial f}{\partial y}(x, y)\) exist at every point of \(\mathbb{R}^2\), although is not continuous at \((0, 0)\).

Problem 11. Define \(f(0, 0) = 0\) and \(f(x, y) = \frac{x^3}{x^2 + y^2}, \text{ if } (x, y) \neq (0, 0)\).

(a) Prove that \(\frac{\partial f}{\partial x}(x, y)\) and \(\frac{\partial f}{\partial y}(x, y)\) are bounded functions in \(\mathbb{R}^2\). (Hence \(f\) is continuous)
(b) Let \(u\) be any unit vector in \(\mathbb{R}^2\). Show that the directional derivative \((D_u f)(0, 0)\) exists, and that its absolute value is at most 1.
Problem 12. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by
\[
f(x, y) = \begin{cases}
x^{4/3} \sin \left(\frac{y}{x} \right) & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases}
\]
Determine all points at which \(f \) is differentiable.

Berkeley Preliminary Exam, 1986

Problem 13. Suppose that \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable and \(f \) satisfies \(f(tx) = t^nf(x) \) for all \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and \(t \in \mathbb{R} \). Prove that
\[
\sum_{j=1}^{n} x_j \frac{\partial f}{\partial x_j}(x) = nf(x)
\]
for \(x \in \mathbb{R}^n \).

University of Pittsburgh Preliminary Exam, 2008

Problem 14. Suppose that \(f \in C^2(\mathbb{R}^n - \{0\}) \) depends on \(r = |x| \) only, i.e. \(f(x) = g(|x|) = g(r) \) for some \(g \in C^2((0, \infty)) \). Express the Laplace operator
\[
\Delta f(x) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}(x)
\]
in terms of \(n, r, g \) and derivatives of \(g \) only.

University of Pittsburgh Preliminary Examination, 2009

Problem 15. Let \(\Omega \) be an open set in \(\mathbb{R}^n \). Let \(F : \Omega \to \mathbb{R}^n \) and \(G : \mathbb{R}^n \to \mathbb{R} \) be two continuously differentiable functions such that \(G \circ F = 0 \) on \(\Omega \). Suppose that
\[
\sum_{j=1}^{n} \left(\frac{\partial G(x)}{\partial x_j} \right)^2 > 0 \text{ for every } x \in F(\Omega).
\]
Prove that \(\det(DF) = 0 \) on \(\Omega \).

University of Pittsburgh Preliminary Exam, 2012

Problem 16. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be given by the formulae:
\[
f(0, 0) = 0,
\]
\[
f(x, y) = \frac{(x+y)^3}{x^2 + y^2},
\]
for any \((x, y) \in \mathbb{R}^2\), with \((x, y) \neq (0, 0)\). Prove that \(f \) is everywhere Lipschitz, but not everywhere differentiable.

University of Pittsburgh Preliminary Exam, 2014

Problem 17. Decide which if the following functions are differentiable at \((0, 0)\):
(a)
\[f(x, y) = \begin{cases} \frac{x^3 y}{x^4 + y^2} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(b)
\[f(x, y) = \begin{cases} \frac{x^2 y^2 - x^3}{x^2 + y^4} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(c)
\[f(x, y) = \begin{cases} \frac{x^2(y^4 + 2x)}{x^2 + y^6} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(d)
\[f(x, y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^2} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(e)
\[f(x, y) = \begin{cases} \frac{x^2 (x + y^2)}{x^2 + y^6} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(f)
\[f(x, y) = \begin{cases} \frac{x^3 + y^3}{\sqrt{x^2 + y^2}} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(g)
\[f(x, y) = \begin{cases} \frac{x^4 y^6 + x^3 + xy^4}{x^2 + y^4} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

(h)
\[f(x, y) = \begin{cases} \frac{|xy|^{3/2}}{x^2 + y^4} & ,(x, y) \neq (0, 0) \\ 0 & ,(x, y) = (0, 0) \end{cases} \]

Problem 18. (a) Write down an example of a function \(f : \mathbb{R}^2 \to \mathbb{R} \) such that the directional derivative \(f_u(0, 0) \) exists in \(\mathbb{R} \) for all unit vectors \(u \in \mathbb{R}^2 \), and yet \(f \) is not differentiable at \((0, 0)\). Also, prove these two facts for your example.

(b) Consider the function \(g : \mathbb{R}^2 \to \mathbb{R} \) given by

\[g(x, y) = x^{2/3} y^{2/3} \]

for all \((x, y) \in \mathbb{R}^2\). Prove that \(g \) is differentiable at \((0, 0)\).
Problem 19. (a) Prove that if the partial derivatives (of first order) of a function \(f : \mathbb{R}^n \to \mathbb{R} \) exist everywhere and they are bounded, then \(f \) is continuous.

(b) Find a function \(f : \mathbb{R}^2 \to \mathbb{R} \) that is differentiable at each point, but whose partial derivatives are not continuous at \((0, 0)\).

Problem 20. Prove that for \(\alpha > 0 \) the mapping \(\Phi : \mathbb{R}^n \to \mathbb{R}^n \), \(\Phi(x) = x|x|^\alpha \), i.e. \(\Phi(x) = (\Phi_1(x), \Phi_2(x), \ldots, \Phi(x_n)) = (x_1|x|^\alpha, x_2|x|^\alpha, \ldots, x_n|x|^\alpha) \) is of class \(C^1 \) and find partial derivatives \(\frac{\partial \Phi_i}{\partial x_j} \).

Problem 21. Show that the vector field \(F(x) = x|x|^{-n} \) defined on \(\mathbb{R}^n - \{0\} \) is divergence free, i.e.
\[
\text{div} F(x) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{x_i}{|x|^n} \right) = 0,
\]
for all \(x \neq 0 \).

Problem 22. Consider on open ball \(B = B(a, r) \subset \mathbb{R}^n \). Prove that the function
\[
\phi(x) = \begin{cases}
\exp \left(-\frac{1}{|x-a|^2 - r^2} \right) & \text{if } x \in B \\
0 & \text{if } x \in \mathbb{R}^n - B
\end{cases}
\]
is infinitely differentiable on \(\mathbb{R}^n \).

Problem 23. Let \(\alpha \in \mathbb{R} \) and \(f_\alpha : \mathbb{R}^2 \to \mathbb{R} \) be given by the formulae:
\[
f_\alpha(0, 0) = 0, \\
f_\alpha(x, y) = \frac{x^4 + y^4}{(x^2 + y^2)\alpha},
\]
for any \((x, y) \in \mathbb{R}^2 - \{(0, 0)\} \).
Determine with proof, those values of \(\alpha \) for which \(f_\alpha \) is differentiable.

University of Pittsburgh Preliminary Exam, 2014

Problem 24. Let \(f \) be a \(C^1 \) function from the interval \((-1, 1)\) into \(\mathbb{R}^2 \) such that \(f(0) = 0 \) and \(f'(0) \neq 0 \). Prove that there is a number \(\epsilon \in (0, 1) \) such that \(||f(t)|| \) is an increasing function of \(t \) on \((0, \epsilon)\).

Berkeley Preliminary Exam, 1991

Problem 25. Let \(D \) be a non-empty, open and conex subset of \(\mathbb{R}^m \) and \(f : D \to \mathbb{R}^n \) is such that there exists \(\alpha > 1 \) and \(L > 0 \) with
\[
||f(x) - f(y)|| \leq L \cdot ||x - y||^\alpha,
\]
for all \(x, y \in D \). Show that \(f \) is constant.
Problem 26. Let $D \subseteq \mathbb{R}^n$ be an open set and $f : D \to \mathbb{R}^m$ be a differentiable function for which there exists a constant $M > 0$ such that

$$||f(x) - f(y)|| \leq M \cdot ||x - y||,$$

for all $x, y \in D$. Show that $||Df(x)|| \leq M$, for all $x \in D$.

Problem 27. Let $f : \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives and satisfy

$$\left| \frac{\partial f}{\partial x_j} \right| \leq M,$$

for all $x = (x_1, x_2, \ldots, x_n)$, $j = 1, 2, \ldots, n$. Prove that

$$|f(x) - f(y)| \leq \sqrt{n} \cdot M||x - y||.$$

Berkeley Preliminary Exam, 1977

Problem 28. Prove that the matrix function $F : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ given by $F(A) = AA^T - I$ is infinitely differentiable and show that

$$DF(A)B = BA^T + AB^T,$$

for all $B \in \mathbb{R}^{n \times n}$.

Problem 29. The class of invertible matrices $GL(n; \mathbb{R})$ forms an open subset in the space of all $n \times n$ matrices $\mathbb{R}^{n \times n} = \mathbb{R}^{n^2}$. The function $F : GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$, $F(A) = A^{-1}$ is smooth and hence differentiable at any $A \in \mathbb{R}^{n \times n}$. Prove that for all $B \in \mathbb{R}^{n \times n}$,

$$DF(A)B = -A^{-1} \circ B \circ A^{-1}.$$

Problem 30. Let $\mathcal{M}_{n \times n}$ denote the vector space of real $n \times n$ matrices. Define the map $f : \mathcal{M}_{n \times n} \to \mathcal{M}_{n \times n}$ by $f(X) = X^2$. Find the derivative of f.

Problem 31. Define $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ by

$$f(x) = XX^T X$$

for $x \in \mathbb{R}^{2 \times 2}$. Let I_2 be the identity matrix. Prove that

$$Df(I)(A) = 2A + A^T,$$

for every matrix $A \in \mathbb{R}^{2 \times 2}$.

Problem 32. Let $\alpha \geq 0$, and

$$F_{\alpha}(x, y) = \begin{cases} \frac{x^2 y^2 + x^4 y}{(|x|^\alpha + y^2) \sqrt{x^2 + y^2}} & ,(x, y) \neq (0, 0) \\ 0 &,(x, y) = (0, 0) \end{cases}$$
Find an $\alpha_0 \in [0, \infty)$ such that

$$\lim_{(x,y) \to (0,0)} F_\alpha(x,y) = 0$$

for $0 \leq \alpha < \alpha_0$ and such that the same limit does not exist if $\alpha \geq \alpha_0$.

Problem 33. Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

If f of $C^2(\mathbb{R}^2)$?

University of Missouri-Columbia Qualifying Exam, 2001

Problem 34. Prove that the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

has directional derivatives in all directions at $(0, 0)$ but it is not differentiable at $(0, 0)$.

University of Missouri-Columbia Qualifying Exam

Problem 35. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} y^2 \log \left(1 + \frac{x^2}{y^2} \right), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

Show that the mixed second order partial derivatives are not continuous in the origin, but

$$\frac{\partial^2 f}{\partial x \partial y}(0, 0) = \frac{\partial^2 f}{\partial x \partial y}(0, 0).$$

Problem 36. Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Show that f is differentiable at $(0,0)$, but $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous at $(0,0)$.

Problem 37. Define f in \mathbb{R}^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2.$$
Show that $f(0, 1, -1) = 0$, $\frac{\partial f}{\partial x}(0, 1, -1) \neq 0$ and that there exists a differentiable function g in some neighborhood of $(1, -1)$ in \mathbb{R}^2 such that $g(1, -1) = 0$ and

$$f(g(y_1, y_2), y_1, y_2) = 0.$$

Find $\frac{\partial g}{\partial x}(1, -1)$ and $\frac{\partial^2 g}{\partial y^2}(1, -1)$.

Problem 38. Put $f(0, 0) = 0$, and

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2},$$

if $(x, y) \neq (0, 0)$. Prove that

(i) $f, \frac{\partial f}{\partial x}, \frac{\partial^2 f}{\partial x^2}$ are continuous in \mathbb{R}^2.

(ii) $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist at every point of \mathbb{R}^2, and are continuous except at $(0, 0)$.

(iii) $\frac{\partial^2 f}{\partial x \partial y}(0, 0) = 1$ and $\frac{\partial^2 f}{\partial y \partial x}(0, 0) = -1$.

Problem 39. Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^2 and $F : \mathbb{R}^2 \to \mathbb{R}$ is defined by

$$F(x, y) = \begin{cases}
 f(x) - f(y) & ,x \neq y \\
 0 & ,x = y
\end{cases}$$

Show that F is $C^1(\mathbb{R}^2)$.

Problem 40. Let F, with components F_1, F_2, \ldots, F_n be a differentiable map of \mathbb{R}^n into \mathbb{R}^n such that $F(0) = 0$. Assume that

$$\sum_{j,k=1}^n \left| \frac{\partial F_j(0)}{\partial x_j} \right|^2 = c < 1.$$

Prove that there is a ball B in \mathbb{R}^n with center 0 such that $F(B) \subset B$.

Berkeley Preliminary Exam, 2000

Problem 41. Let $A(t) = [x_{ij}(t)] : (a, b) \to \mathbb{R}^{n \times n}$ be a smooth matrix-valued curve. Prove that if $A(0) = I$, then

$$\frac{d}{dt} \bigg|_{t=0} (\det A(t)) = \sum_{i=1}^n x'_{ii}(0) = \text{tr} A'(0).$$

Problem 42. Let $f \in C^2(\mathbb{R}^2)$. Suppose that $\nabla f = 0$ on a compact set $E \subset \mathbb{R}^2$. Prove that there is a constant $M > 0$ such that
|f(x) - f(y)| \leq M|x - y|^2,

for all \(x, y \in E\).

Problem 43. Let \(F(t) = (f_{ij}(t))\) be an \(n \times n\) matrix of continuously differentiable functions \(f_{ij} : \mathbb{R} \to \mathbb{R}\), and let

\[
u(t) = \text{tr}(F(t)^3).
\]

Show that \(u\) is differentiable and

\[
u'(t) = 3 \text{tr}(F(t)F'(t)).
\]

Berkeley Preliminary Exam, 1983

Problem 44. Let \(M_{n \times n}\) denote the vector space of \(n \times n\) real matrices for \(n \geq 2\). Let \(\text{det} : M_{n \times n} \to \mathbb{R}\) be the determinant map.

(a) Show that \(\text{det}\) is \(C^\infty\).
(b) Show that the derivative of \(\text{det}\) at \(A \in M_{n \times n}\) is zero if and only if \(A\) has rank less or equal than \(n - 2\).

Berkeley Preliminary Exam, 1993

Problem 45. Let \(f : D \subseteq \mathbb{R}^2 \to \mathbb{R}\) and \((x_0, y_0) \in \text{int}(D)\). Show that if \(f\) has partial derivatives in a neighborhood of the point \((x_0, y_0)\) and if one of them is continuous at \((x_0, y_0)\), then \(f\) is differentiable in \((x_0, y_0)\).

Problem 46. Let the function \(f : \mathbb{R}^n \to \mathbb{R}^n\) satisfy two conditions:

(i) \(f(K)\) is compact whenever \(K\) is a compact subset of \(\mathbb{R}^n\);
(ii) If \(\{K_n\}\) is a decreasing sequence of compact subsets of \(\mathbb{R}^n\), then

\[
f \left(\bigcap_{1}^{\infty} K_n \right) = \bigcap_{1}^{\infty} f(K_n).
\]

Show that \(f\) is continuous.

Berkeley Preliminary Exam

Problem 49. Prove that a map \(g : \mathbb{R}^n \to \mathbb{R}^n\) is continuous only if its graph is closed in \(\mathbb{R}^n \times \mathbb{R}^n\). Is the converse true?

Problem 50. Let \(U \subset \mathbb{R}^n\) be an open set. Suppose that the map \(h : U \to \mathbb{R}^n\) is homeomorphism from \(U\) onto \(\mathbb{R}^n\), which is uniformly continuous. Prove that \(U = \mathbb{R}^n\).

Problem 51. Let \(f\) be a real valued function on \(\mathbb{R}^2\) with the following properties:

(i) for each \(y_0 \in \mathbb{R}\), the function \(x \mapsto f(x, y_0)\) is continuous.
(ii) for each \(x_0 \in \mathbb{R}\), the function \(y \mapsto f(x_0, y)\) is continuous.
(iii) $f(K)$ is compact whenever K is a compact subset of \mathbb{R}^2.

Prove that f is continuous.

Problem 52. A map $f : \mathbb{R}^m \to \mathbb{R}^n$ is *proper* if it is continuous and $f^{-1}(B)$ is compact for each compact subset B of \mathbb{R}^n; f is *closed* if it is continuous and $f(A)$ is closed for each closed subset of A of \mathbb{R}^m.

(i) Prove that every proper map $f : \mathbb{R}^m \to \mathbb{R}^n$ is closed.
(ii) Prove that every one-to-one map $f : \mathbb{R}^m \to \mathbb{R}^n$ is proper.

Problem 53. Let $g : [0, \infty) \to \mathbb{R}$ and $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = g(||x||)$ for any $x \in \mathbb{R}^n$. Show that the following statements are equivalent:

(i) f is C^1
(ii) g is C^1 and $g'(0) = 0$.

Problem 54. Let $X : (a,b) \to \mathbb{R}^{n \times n}$ be a smooth matrix-valued function. Suppose that $X(t) \in O(n)$ is an orthogonal matrix for every t. Suppose that there is a matrix-valued $C : (a,b) \to \mathbb{R}^{n \times n}$ such that

$$X'(t) = C(t) \cdot X(t)$$

for all $t \in (a, b)$. Prove that

$$C(t) + C^T(t) = O$$

for all $t \in (a, b)$.

Problem 55. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an orthogonal linear transformation, so $||A(x)|| = ||x||$, for every $x \in \mathbb{R}^n$. Let $u : \mathbb{R}^n \to \mathbb{R}$ be a C^2 and harmonic: $\nabla \cdot \nabla u = 0$. Prove that the composition $u \circ A$ is also harmonic.

University of Pittsburgh Preliminary Exam, 2014

Problem 56. For n a positive integer, let $u : \mathbb{R}^n - \{0\} \to \mathbb{R}$ be a C^2 function. Suppose that u depends only on the variable $r = \sqrt{|x|^2}$ and that u is bounded on its domain. Finally suppose also that u is harmonic: $\nabla \cdot \nabla u = 0$. Prove that u is constant.

University of Pittsburgh Preliminary Exam, 2014