Problem 1. Let $ABCD$ be a convex quadrilateral and $AC \cap BD = \{O\}$. Show that $ABCD$ is a parallelogram if and only if
\[\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OD}. \]

Problem 2. Let M be a point in the plane of triangle ABC. Prove that the centroids of the triangles MAB, MBC, and MCA respectively form a triangle similar to triangle ABC.

Problem 3. Let ABC be a triangle and AA_1, BB_1, CC_1 its medians. Show that AA_1, BB_1, CC_1 can be the side lengths of a triangle.

Problem 4. Let L_1 and L_2 be distinct lines in the plane. Prove that L_1 and L_2 intersect if and only if for every real number $\lambda \neq 0$ every point P not on L_1 or L_2 there exists points A_1 on L_1 and A_2 on L_2 such that $\overrightarrow{PA_2} = \lambda \overrightarrow{PA_1}$.

Problem 5. Find the range of the function $f : \mathbb{R} \to \mathbb{R}$,
\[f(x) = (\sin x + 1)(\cos x + 1). \]

Problem 6. Prove that
\[\sec^{2n} x + \csc^{2n} x \geq 2^{n+1}, \]
for all integers $n \geq 0$, and for all $x \in \left(0, \frac{\pi}{2}\right)$.

Problem 7. Let (G, \cdot) be a group such that $(ab)^2 = a^2b^2$, for all $a, b \in G$. Show that G is an abelian group.

Problem 8. Let (G, \cdot) be a group such that $x^2 = e$ for all $x \in G$. Show that G is abelian. Here e is the identity element in G.

Problem 9. Let R be a ring with identity with the property that $(xy)^2 = x^2y^2$ for all $x, y \in R$. Show that R is commutative.