This exam contains 8 pages (including this cover page) and 7 questions. The total of points one can obtain is 28. Questions 6 and 7 are considered as BONUS problems.

This is NOT an open book and notes exam. Phones and calculators are NOT allowed. Show all your work (no work = no credit). Write neatly. Simplify your answers.

Grade Table (for teacher use only)

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total:</td>
<td>28</td>
<td>28/20</td>
</tr>
</tbody>
</table>

Good luck !!!
1. (4 points) (a) Give the definition of the following notions: ring and field. (b) Show that $\mathbb{Q}(\sqrt{7})$ is a field. You may use the fact that $\mathbb{Q}(\sqrt{7}) \subset \mathbb{R}$ and \mathbb{R} is a ring.

(a) A ring R equipped with two operations "+" and "\cdot" is the set R such that $(R, +)$ is an Abelian group and the following four ring axioms are satisfied, for any elements a, b, c in R:

1. $(R, +)$ is an Abelian group
2. Closure: $a + b \in R$
3. Associativity: $a(bc) = (ab)c$
4. Distributivity: $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$

A field F is a ring such that it satisfies the following:

4. F is commutative
5. F has unity
6. Every nonzero element in F is a unit.

(b) We know that \mathbb{R} is a ring! We only need to show that $\mathbb{Q}(\sqrt{7}) \subset \mathbb{R}$ is a subring of \mathbb{R} such that every element has an inverse in $\mathbb{Q}(\sqrt{7})$. Let $x = a + b\sqrt{7}$, and $y = c + d\sqrt{7}$, with $x, y \in \mathbb{Q}(\sqrt{7})$.

- **Closure under addition**: $x + y = (a + c) + (b + d)\sqrt{7} \in \mathbb{Q}(\sqrt{7})$
 since $a + c$ and $b + d$ are in \mathbb{Q}.
- **Closure under multiplication**: $x \cdot y = (a + b\sqrt{7})(c + d\sqrt{7}) = ac + ad\sqrt{7} + bc\sqrt{7} + bd\sqrt{7} \in \mathbb{Q}(\sqrt{7})$, since $ac + bd$ and $ad + bc$ are both in \mathbb{Q}.
- additive identity: 0 = 0 + 0 \cdot \sqrt{7} \in \mathbb{Q}(\sqrt{7})
- multiplicative identity: 1 = 1 + 0 \cdot \sqrt{7} \in \mathbb{Q}(\sqrt{7})
- additive inverse: -a - b\sqrt{7} is in \mathbb{Q}(\sqrt{7}), since -a, b \in \mathbb{Q}.

\[\frac{-a}{a^2 - 7b^2} + \frac{-b}{a^2 - 7b^2} e \in \mathbb{Q}. \]

Thus \(\mathbb{Q}(\sqrt{7}) \) is a field. \(\Box \)
2. (4 points) Find all units, zero-divisors, idempotents and nilpotents in \mathbb{Z}_{12}.

Units: \(\{1, 5, 7, 11\} \) in \mathbb{Z}_{12}

Indeed, 1 divides itself, so 1 is always a unit. Next, \(5 \cdot 5 = 25 = 1 \pmod{12} \), \(7 \cdot 7 = 49 = 1 \pmod{12} \), and \(11 \cdot 11 = 121 = 1 \pmod{12} \).

Zero-Divisors: \(\{2, 3, 4, 6, 8, 9, 10\} \) in \mathbb{Z}_{12}

Indeed, \(2 \cdot 6 = 12 = 0 \pmod{12} \). Also, we have \(8 \cdot 9 = 72 = 0 \pmod{12} \), and \(10 \cdot 6 = 60 = 0 \pmod{12} \).

Idempotents: \(\{0, 1, 4, 9\} \) in \mathbb{Z}_{12}

Indeed, one can check that \(0^2 = 0 \), \(1^2 = 1 \), \(2^2 = 4 \), \(3^2 = 9 \), \(4^2 = 16 = 4 \pmod{12} \), \(5^2 = 25 = 1 \pmod{12} \), \(6^2 = 36 = 0 \pmod{12} \), \(7^2 = 49 = 1 \pmod{12} \), \(9^2 = 81 = 9 \pmod{12} \), \(10^2 = 100 = 4 \pmod{12} \), and \(11^2 = 121 = 1 \pmod{12} \).

Nilpotents: \(\{0, 6\} \) in \mathbb{Z}_{12}

Clearly, 0 is nilpotent, and \(6^2 = 36 = 0 \pmod{12} \).
3. (4 points) (a) Find all prime and maximal ideals in the ring \(\mathbb{Z}_{12} \). (b) Find all ring homomorphisms from \(\mathbb{Z}_{12} \) to \(\mathbb{Z}_{12} \).

(a) The positive divisors of 12 are 1, 2, 3, 4, 6, 12. So, the ideals in \(\mathbb{Z}_{12} \) are

\[
\begin{align*}
(1) &= \mathbb{Z}_{12}, \\
(2) &= \{0, 2, 4, 6, 8, 10\}, \\
(3) &= \{0, 3, 6, 9\}, \\
(4) &= \{0, 4, 8\}, \\
(6) &= \{0, 6\} \text{ and } (12) = \{0\} \quad \text{(trivial ideal)}
\end{align*}
\]

Clearly, (1) and (12) are improper ideals. Also, we have

\[
\begin{align*}
(12) &= (6) \\
(12) &= (6) \\
(12) &= (6) \\
(12) &= (6)
\end{align*}
\]

This implies that (2) and (3) are prime and maximal ideals.

(b) Any ring homomorphism \(\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{12} \) satisfies the following conditions:

(i) \(\phi(a+b) = \phi(a) + \phi(b), \quad \forall a, b \in \mathbb{Z}_{12} \)

(ii) \(\phi(ab) = \phi(a) \cdot \phi(b), \quad \forall a, b \in \mathbb{Z}_{12} \)

From (i), we know that \(\phi(a) = a \cdot \phi(1) \), and from (ii) \(\phi(1) = \phi^2(1) \), which implies that \(\phi^2(1) - \phi(1) = 0 \) in \(\mathbb{Z}_{12} \).

Denote \(\phi(1) = x \), and thus \(x^2 = x \) in \(\mathbb{Z}_{12} \). We need to find the idempotents in \(\mathbb{Z}_{12} \). This implies that \(x \in \{0, 1, \hat{1}, \hat{2}\} \). Therefore, the ring homomorphisms from \(\mathbb{Z}_{12} \) to \(\mathbb{Z}_{12} \) are given by
\(\phi(a) = 0 \pmod{12}, \)
\(\phi(a) = a \pmod{12} \)
\(\phi(a) = 4a \pmod{12} \)
\(\phi(a) = 9a \pmod{12}, \) and we are done. \(\square \)
4. (4 points) Let \((\mathbb{C}, +, \cdot)\) be the ring of complex numbers, and \((\mathbb{S}, +, \cdot)\) be the ring of two by two complex matrices together with matrix addition and multiplication. Here \(\mathbb{S}\) denotes the set \(\mathbb{S} = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{C} \right\}\). Show that the map \(\phi : \mathbb{C} \to \mathbb{S}\) defined by
\[
\phi(a + bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}
\]
is a ring homomorphism.

Let \(z_1 = a + b \cdot i\) and \(z_2 = c + d \cdot i\) be two complex numbers. Since
\[
\phi(z_1 + z_2) = \phi(a + b \cdot i + c + d \cdot i) = \phi(a + c + (b + d) \cdot i) =
\begin{bmatrix} a + c & b + d \\ -b - d & a + c \end{bmatrix} =
\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \phi(a + b \cdot i) + \phi(c + d \cdot i) = \phi(z_1) + \phi(z_2).
\]

Also,
\[
\phi(z_1 z_2) = \phi((a + bi)(c + di)) = \phi(ac - bd + (ad + bc) \cdot i) = \begin{bmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{bmatrix} =
\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \phi(a + bi) \cdot \phi(c + di) = \phi(z_1) \cdot \phi(z_2).
\]

Therefore, the map \(\phi : \mathbb{C} \to \mathbb{S}\), \(\phi(a + b \cdot i) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}\) is an homomorphism. \(\Box\)
5. (4 points) Show that the rings \(\mathbb{Q}(\sqrt{2}) \) and \(\mathbb{Q}(\sqrt{3}) \) are not isomorphic.

Assume that there exists an isomorphism, \(\phi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3}) \). Note that any homomorphism between the fields \(\mathbb{Q} \) and \(\mathbb{Q} \) fixes \(\mathbb{Q} \) pointwise. In other words, \(\phi(x) = x \), for all \(x \in \mathbb{Q} \).

Since \(\phi \) fixes the elements of \(\mathbb{Q} \), we have

\[
2 = \phi(2) = \phi((\sqrt{2})^2) = \phi(\sqrt{2})^2 = (a + b\sqrt{3})^2,
\]

since \(\phi(\sqrt{2}) = a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3}) \) for some \(a, b \in \mathbb{Q} \).

This implies that

\[
2 = \phi(2) = a^2 + 3b^2 + 2ab\sqrt{3}, \text{ which will give us}
\]

\[
\begin{cases}
 a^2 + 3b^2 = 2 \\
 2ab = 0
\end{cases}
\]

From the second equality, we have \(a = 0 \) or \(b = 0 \). If \(a = 0 \), then \(3b^2 = 2 \), and \(b = \pm \sqrt{\frac{2}{3}} \notin \mathbb{Q} \), contradiction. Hence \(a \neq 0 \) and \(b = 0 \). But, in this case \(2 = a^2 \), which implies \(a = \pm \sqrt{2} \notin \mathbb{Q} \), contradiction again!

Therefore, there does not exist an isomorphism \(\phi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3}) \) and we are done. \(\square \)
6. (4 points) An element a in a ring R is called **idempotent** if $a^2 = a$ for all $a \in R$.

(a) Prove that the only idempotents in an integral domain are 0 and 1.

(b) If the ring R is commutative and $a \in R$ is an idempotent, then show that $1 - a$ is also an idempotent.

(a) Let us consider the element a in R such that $a^2 = a$. Then $a^2 - a = 0$ or $a(a-1) = 0$. Since there are no zero divisors in an integral domain, it follows that $a = 0$ or $a - 1 = 0$, or equivalently $a = 0$ or $a = 1$.

(b) Let $a \in R$ be an idempotent, i.e. $a^2 = a$. Now, we compute

\[
(1-a)^2 = 1 - 2a + a^2 = 1 - 2a + a = 1 - 2a + a = 1 - a.
\]

Thus, $1-a$ is also an idempotent. \square
7. (4 points) Let \(R = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} ; a, b \in \mathbb{Q} \right\} \). One can prove that \(R \) with the usual matrix addition and multiplication is a ring. Consider \(J = \left\{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} ; b \in \mathbb{Q} \right\} \) be a subset of the ring \(R \).

(a) Prove that the subset \(J \) is an ideal of the ring \(R \);

(b) Prove that the quotient ring \(R/J \) is isomorphic to \(\mathbb{Q} \).

(a) Let \(\alpha = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \) and \(\beta = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \) be arbitrary elements in \(J \), with \(a, b \in \mathbb{Q} \). Then, since we have

\[
\alpha + \beta = \begin{bmatrix} 0 & a+b \\ 0 & 0 \end{bmatrix} \in J,
\]

the subset \(J \) is an additive group. Now, consider the elements

\[
\gamma = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \in J \quad \text{and} \quad \delta = \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix} \in J.
\]

Then, we have

\[
\gamma \delta = \begin{bmatrix} 0 & ac \\ 0 & 0 \end{bmatrix} \in J \quad \text{and} \quad \delta \gamma = \begin{bmatrix} 0 & ca \\ 0 & 0 \end{bmatrix} \in J.
\]

Thus, each element of \(J \) multiplied by an element of \(R \) is still in \(J \). Hence \(J \) is an ideal of the ring \(R \).

(b) Consider the map \(\phi : R \to \mathbb{Q} \) defined by

\[
\phi \left(\begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \right) = a, \quad \text{for} \quad \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \in R.
\]

Firstly, we show that \(\phi \) is a ring homomorphism.
We have $\phi([1,0,0]) = 1$. Thus ϕ maps the unity element of R to the unity element of Q.

Now, take
\[
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}, \begin{bmatrix}
c & d \\
0 & c
\end{bmatrix} \in R.
\]

Then, we have
\[
\phi\left(\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix} + \begin{bmatrix}
c & d \\
0 & c
\end{bmatrix}\right) = \phi\left(\begin{bmatrix}
a+c & b+d \\
0 & a+c
\end{bmatrix}\right) = a+c = \phi\left(\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}\right) + \phi\left(\begin{bmatrix}
c & d \\
0 & c
\end{bmatrix}\right),
\]

and
\[
\phi\left(\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix} \cdot \begin{bmatrix}
c & d \\
0 & c
\end{bmatrix}\right) = \phi\left(\begin{bmatrix}
ac & ad+bc \\
0 & ac
\end{bmatrix}\right) = ac = \phi\left(\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}\right) \cdot \phi\left(\begin{bmatrix}
c & d \\
0 & c
\end{bmatrix}\right).
\]

It follows that $\phi : R \to Q$ is a ring homomorphism.

Next, we determine the kernel of ϕ. We claim that $\text{Ker } \phi = \{0\}$.

If $g = \begin{bmatrix}
a & b \\
0 & a
\end{bmatrix} \in \text{Ker } \phi$, then we have $0 = \phi(g) = \phi\left(\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}\right) = a$. So $g = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} \in \{0\}$.

and hence \(\ker \phi \subset J \). On the other hand, if \(B = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \in J \), then it follows from the definition of \(\phi \) that \(\phi(B) = 0 \). Thus, \(J \subset \ker \phi \). Putting these two inclusions together yields \(J = \ker \phi \). Next, let us observe that the homomorphism \(\phi \) is onto.

Indeed, just take for any \(a \in \mathbb{Q} \), \(\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \in \mathbb{R} \); then we have

\[
\phi \left(\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \right) = a.
\]

Therefore, \(\phi : \mathbb{R} \to \mathbb{Q} \) is a surjective homomorphism with kernel \(J \). By the first isomorphism theorem,

\[
\mathbb{R} / J \cong \mathbb{Q}
\]

and we are done. \(\square \)