Problem 1. Calculate the quotients and remainders on division of the indicated \(f(x) \) by \(g(x) \) in the indicated polynomial rings:

a) \(f(x) = 4x^3 - 2x^2 + 5x - 3 \), \(g(x) = x^2 + x + 1 \) in \(\mathbb{Q}[x] \)

b) \(f(x) = 3x^4 + 2x + 3 \), \(g(x) = x^2 + 2x + 1 \) in \(\mathbb{Z}_5[x] \)

c) \(f(x) = x^4 + x^3 + x^2 + x + 1 \), \(g(x) = x + 1 \) in \(\mathbb{Z}_2[x] \)

d) \(f(x) = x^4 + 9x^2 + 5 \), \(g(x) = x^2 + 3x + 4 \) in \(\mathbb{Z}_{11}[x] \).

Problem 2. Find all polynomials of degree 2 in \(\mathbb{Z}_2[x] \) and in \(\mathbb{Z}_3[x] \).

Problem 3. Find all zeros of \(f(x) = x^2 - 1 \) in \(\mathbb{Z}_{15} \). Does this contradict a theorem about the degree of a polynomial and its number of roots?

Problem 4. Calculate \(\text{gcd}(f(x), g(x)) \) for the indicated \(f(x) \) and \(g(x) \) in the indicated polynomial rings \(F[x] \). Also, in each case find \(u(x) \) and \(v(x) \) such that \(\text{gcd}(f(x), g(x)) = u(x)f(x) + v(x)g(x) \),

a) \(f(x) = x^4 - x^2 - 2 \), \(g(x) = x^3 + x^2 + x + 1 \) in \(\mathbb{Q}[x] \)

b) \(f(x) = x^4 + x^3 + x + 1 \), \(g(x) = x + 1 \) in \(\mathbb{Z}_2[x] \)

c) \(f(x) = x^3 + 1 \), \(g(x) = x + 2 \) in \(\mathbb{Z}_5[x] \)

d) \(f(x) = x^3 + 2x + 1 \), \(g(x) = x + 2 \) in \(\mathbb{Z}_9[x] \).

Problem 5. Find the zeros of the indicated \(f(x) \) in the indicated field:

a) \(f(x) = x^2 + x + 1 \) in \(\mathbb{Z}_3 \)

b) \(f(x) = x^3 + x^2 + x + 1 \) in \(\mathbb{R} \)

c) \(f(x) = x^3 + x^2 + x + 1 \) in \(\mathbb{C} \)

d) \(f(x) = x^8 - 1 \) in \(\mathbb{R} \).

Problem 6. Show that

(i) \(f(x) = x^3 + 2x + 1 \) is irreducible over \(\mathbb{Z}_5 \)

(ii) \(f(x) = x^3 + x + 1 \) is irreducible over \(\mathbb{Z}_7 \)

(iii) \(f(x) = x^4 - 2 \) is irreducible over \(\mathbb{Q} \) but reducible over \(\mathbb{R} \)

(iv) \(f(x) = x^4 - 2x^2 + 4 \) is irreducible over \(\mathbb{Q} \).

Problem 7. Using any criteria given in class, determine whether the indicated polynomial \(f(x) \) in \(\mathbb{Z}[x] \) is reducible over \(\mathbb{Q} \). Justify your answers.

a) \(f(x) = 10x^7 - 6x^4 + 15x^2 + 18x - 6 \)
b) \(f(x) = x^4 - 4x^2 + 4x - 1 \)
c) \(f(x) = 3x^4 + 5x + 1 \)
d) \(f(x) = x^4 + 4. \)

Problem 8. Let \(f(x) = x^{n-1} + x^{n-2} + \ldots + x + 1 \in \mathbb{Q}[x], \) where \(n \) is not a prime. Show that \(f(x) \) is not irreducible over \(\mathbb{Q}. \)

Problem 9. Describe the elements of \(\mathbb{Q}[x]/\langle x^2 - 3 \rangle, \) and show that this quotient ring of \(\mathbb{Q}[x] \) isomorphic to \(\mathbb{Q}(\sqrt{3}). \)

Problem 10. Show that \(\mathbb{R}[x]/\langle x^2 + 1 \rangle \) is isomorphic to \(\mathbb{C}. \)